
1

Shaft Whirl, Critical Speeds & Beam Vibration

❖ Shaft whirl is a potentially 
destructive, self-sustaining 
flexural vibration observed in 
rotating shafts

❖ It occurs if the rotational 
frequency of the shaft 
coincides with a resonant 
frequency for flexural 
vibration

❖ These shaft speeds are called
critical speeds

❖ If the maximum design speed is less than the lowest 
critical speed, whirl will not be a problem

❖ This is not always possible and it is vital to be able to 
calculate what the critical speeds will be 
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• Given a generalized beam we wish to solve for

– Natural Frequency ωn or ωnr

• Where r is the frequency number (1, 2, 3, …)

– Mode shapes associated with specific values of 
ωnr

• Essentially we are looking for the vertical displacement, 
y, for any given point along the beam, x

x = L

y(x)

O

x = 0



• From previous experience we know then that we 
need to find a generalized equation

• Where will give us ωnr

• Solving the solution vector {C} at ωnr will define the 
mode shapes

• To do this you need a generalized equation for vertical 
displacement, y, as a function of distance along the 
beam, x, and time, t.

    0  =  C Z

  0det =Z
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Theory for the Flexural Vibration of Uniform Beams

dx
x = L

y

O

Consider the motion of an infinitesimal element of the beam of length dx

x

y

dx

M

S

M + dx
M

x

S + dx
S

x
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Analysis in the handout leads to the differential equation

2

2

4

4

t

y
 A   =  

x

y
 IE




−






This is the general governing differential equation 
for the free vibration of a beam

Equation (4) is a partial differential equation giving the deflection, y, 

which is a function of space x and time t

We want to find the natural frequencies and the 
corresponding mode shapes of the beam

(4)
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For free vibration at a natural frequency, the motion of each 
point on the beam will be sinusoidal, but the amplitude of 
vibration will vary along the length

Substitution                                            into (4)  ( ) ( ) t  xY  =  t  ,xy ωcos



( )xY

x

Amplitude at position, x

( )xYThe deflected shape of the beam defined by the amplitude            
will give us the required mode shape

y

x = 0 x = L

2

2

4

4

t

y
 A   =  

x

y
 IE




−





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Substituting into (4), we get 

( )xY
IE

A

x

Y
 

ω 
  =  

d

d 2

4

4 

For a uniform cross-section, A and I are constant and it’s convenient 

to introduce the so-called wavenumber, l, defined by 

IE

A 2
4 ω 

  =  λ


(5)

The final solution for Y(x) is 

( ) xC  x CxC  x C  =  x Y λcoshλsinhλcosλsin 4321 +++ (6)



• This results in a generalized equation for 
displacement of y at any given point along the 
beam, x, for a given frequency of vibration 
(contained in λ) 

• HOWEVER, this contains 4 unknowns (C1, C2, 
C3 and C4) and you will therefore need a 
minimum of 4 equations to solve for them 

– Boundary conditions must be used!!!

( ) xC  x CxC  x C  =  x Y λcoshλsinhλcosλsin 4321 +++ (6)
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Descriptive terms Diagrammatic Boundary conditions

Built-in
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encastré

Simple support
hinged
pinned

Free

Massless slider

The constants C1 - C4 depend on the boundary 

conditions at the ends of the beam and will define 
the mode shapes
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
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You will therefore need to partially differentiate (6)

several times with depending on what boundary 
conditions you have

xC  x CxC  x C  =   
dX

dY
λsinhλλcoshλλsinλλcosλ 4321 ++−

( ) xC  x CxC  x C  =  x Y λcoshλsinhλcosλsin 4321 +++

xC  x CxC  x C  = 
dx

Yd
λcoshλλsinhλλcosλλsinλ 2

4

2

3

2

2

2

12

2

++−−

xC  x CxC  x C  = 
dx

Yd
λsinhλλcoshλλsinλλcosλ 3

4

3

3

3

2

3

13

3

+++−

(6a)

(6b)

(6c)

(6d)
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General Approach for Finding the Solutions

2. Since each of the four boundary condition equations depends on 

C1 - C4 , they can be assembled in the form 

    0  =  C Z

where {C} is a vector of the constants C1 - C4 and [Z] is a 

coefficient matrix. 

3. For a valid solution,   0det =Z

This gives the Frequency Equation and its roots will give the 
natural frequencies of the beam 

4. When each root is substituted back into (7), the solution vector {C}
will define the mode shapes when the values are put into (6) 

(7)

1. Start by identifying the four boundary conditions and express the 

boundary conditions in terms of Y(x) and its derivatives 
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1. Boundary Conditions

Example 1 Simply-supported Beam

x = 0 x = L

The boundary conditions at  x = 0 and at  x = L are 

y = 0 M = 0and 0
2

2

=




x

y

Since ( ) ( ) t  xY  =  t  ,xy ωcos the boundary conditions become

Y = 0 0
d

d
2

2

=
x

Y
and

xC  x CxC  x C  =  
x

Y
λcoshλλsinhλλcosλλsinλ

d

d
4

2

3

2

2

2

1

2

2

2

++−−

From equation (6)

( ) xC  x CxC  x C  =  x Y λcoshλsinhλcosλsin 4321 +++

θsinhθcosh
dθ

d
=

θcoshθsinh
dθ

d
=

-4

-3

-2

-1

0

1

2

3

4

5

-2 -1 0 1 2

Cosh

Sinh
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Hence, at

01λ0λ1λ0λ
d

d
4

2

3

2

2

2

1

2

2

2

0

=++−−








=

C  CC  C  =
x

Y

x

( ) 010100 4321 =+++ C   CC  C  =   Y

and at

0λcoshλλsinhλλcosλλsinλ
d

d
4

2

3

2

2

2

1

2

2

2

=++−− LC  L CLC  L C  =  
x

Y

( ) 0λcoshλsinhλcosλsin 4321 =+++ LC  L CLC  L C  =  L Y

xC  x CxC  x C  =  
x

Y
λcoshλλsinhλλcosλλsinλ

d

d
4

2

3

2

2

2

1

2

2

2

++−−

( ) xC  x CxC  x C  =  x Y λcoshλsinhλcosλsin 4321 +++

0 = 
d

 d
  and   0 =     ,  0 = 

2

2

x

Y
Yx

0 = 
d

 d
  and   0 =     ,  = 

2

2

x

Y
YLx
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2. Assembling the four equations in matrix form

























=











































−−

−

0

0

0

0

λcoshλλsinhλλcosλλsinλ

λcoshλsinhλcosλsin

λ0λ0

1010

4

3

2

1

2222

22

C

C

C

C

LLLL

LLLL
(7)

3. Expanding the determinant of the coefficient matrix and 
equating to zero gives the Frequency Equation. 

0λsinhλsinλ4 4 =− LL

    0  =  C Z
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0λsinhλsinλ4 4 =− LL

Q1 What are the roots of the equation?

Q2 Can l = 0 ?

A

IE

A 2
4 ω 

  =  λ


The definition of l (equation 5) is

l is only zero if the natural frequency, w, is zero

This is only possible if the beam has rigid body modes

But a simply-supported beam does NOT have rigid body modes

0λ 0λsinh LAs a result

0λsinhλsinλ4 4 =− LL 0λsin =L

-4

-3

-2

-1

0

1

2

3

4

5

-2 -1 0 1 2

Cosh

Sinh

Moodle 
Help 

pages
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0λsin =LThe Frequency Equation is

which has roots πλ rLr =

Since

IE

A 2
4 ω 

  =  λ


the natural frequencies are

 A

E I

L

 r 
nrr

ρ

π
ω

2









== w for  r = 1, 2, 3, …

for  r = 1, 2, 3, …



















































































=

−− 0

0

0

0

λcoshλλsinhλλcosλλsinλ

λcoshλsλcosλsin

λ0λ-0

1010

4

3

2

1

2222 C

C

C

C

LLLL

LLinhLL

2. Assemble into matrix form

(7a)

(7b)

(7a)

(7c)

3. Solving                         gives the Frequency Equation and its roots 
will give ωr contained in λr

•This is complicated so we have given you the resulting Frequency 
Equation for a number of different beam types on page 5 of your 
notes

•But this is still difficult to solve, so we also give you the numerical 
solutions for λrL on the same page

  0det =Z

    0  =  C Z
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Numerical values of roots lr L of frequency equations

r 1 2 3 4 5 >5

Pinned-pinned p 2 p 3 p 4 p 5 p r p

Clamped-
clamped

& free-free
4.730 7.853 10.996 14.137 17.279  (r + 0.5) p

Clamped-pinned
& free-pinned

3.927 7.069 10.210 13.351 16.493  (r + 0.25) p

Clamped-free 1.875 4.694 7.855 10.996 14.137  (r – 0.5) p

Selecting the values of lr L from the above table for the beam of 

interest, the natural frequencies can be found from reworking 
equation (5).  That is: 

 A

E I
 

L

L
  r

nrr
ρ

)(
ω

2

2
l

w ==

 A

E I
 

L
  n

ρ

)(
ω

2

2

1

p
=

 A

E I
 

L
  n

ρ

)2(
ω

2

2

2

p
=where ,etc.
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so the natural frequencies are

 A

E I
 

L

 r 
  r

ρ

π
ω

2









= for  r = 1, 2, 3, …

which has roots πλ rLr = for  r = 1, 2, 3, … (from previous table)

Example 1 Simply-supported Beam

x = 0 x = L

























=











































−−

−

0

0

0

0

λcoshλλsinhλλcosλλsinλ

λcoshλsinhλcosλsin

λ0λ0

1010

4

3

2

1

2222

22

C

C

C

C

LLLL

LLLL
(7)

The frequency equation is   0det =Z

The four boundary conditions lead to 
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4. To find the mode shapes, substitute the roots into equation (7) 

and solve for the constants C1 - C4

























=













































−−

−

0

0

0

0

λcoshλλsinhλλcosλλsinλ

λcoshλsinhλcosλsin

λ0λ0

1010

4

3

2

1

2222

22

C

C

C

C

LLLL

LLLL

rrrrrrrr

rrrr

rr

(7a)

(7b)

(7c)

(7d)

(7a) 042 =+ CC

(7b) ( ) 0λ 42

2 =+− CCr

0λ rSince

042 == CC

(7c) 0.λsinh.λsin 31 =+ C L   CL rr

03 = C

(7d) 0.λsinhλ.λsinλ 3

2

1

2
=+− C L   CL rrrr
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The only non-zero constant is C1

Its value is arbitrary & we normally choose  C1 = 1

( )
L

xr
  x  =  x Y rr

π
sinλsin =

Hence, the mode shape is 

( ) xC  x CxC  x C  =  x Y λcoshλsinhλcosλsin 4321 +++ (6)
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Mode #1 (r = 1)
( )

L

x
  =  x Y

π
sin1
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Mode #2 (r = 2)

( )
L

x
  =  x Y

π2
sin2
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Mode #3 (r = 3)
( )

L

x
  =  x Y

π3
sin3
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Example 2   Cantilever (Clamped-free) Beam

x = 0 x = L

1. Boundary conditions

The boundary conditions are

00,   y = x = 0  =  
x

y




Clamped end at and

0  =        0
2

2

x

y
,   M = x = L






0  =        0  =  
3

3

x

y
S






Free end at

and
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Since ( ) ( ) t  xY  =  t  ,xy ωcos the boundary conditions become

0 = 
d

 d
  and   0 =     ,  0 = At  

x

Y
Yx

0 = 
d

d
  and   0 = 

d

d
    ,At  

3

3

2

2

x

Y

x

Y
x = L

Substituting from equation (6a, 6b, 6c and 6d) we get (in matrix form)

















































































=

−

−−

0

0

0

0

λsinhλλcoshλλsinλλcosλ

λcoshλλsinhλλcosλλsinλ

0λ0λ

1010

4

3

2

1

2

3333

222

C

C

C

C

LLLL

LLLL

This is the particular version of equation (7) for a cantilever beam

2. Assemble into matrix form

(7a)

(7b)

(7c)

(7d)
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The Frequency Equation is given by   0det =Z

After manipulation (and noting that a cantilever has no rigid body 
modes), this gives 

0λcoshλcos1 L  =    L  + 

There are no closed-form solutions to this equation, so the roots lr L
must be obtained numerically and are given in the handout on page 5

3. Set up the Frequency Equation



29

Numerical values of roots lr L of frequency equations

r 1 2 3 4 5 >5

Pinned-pinned p 2 p 3 p 4 p 5 p r p

Clamped-
clamped

& free-free
4.730 7.853 10.996 14.137 17.279  (r + 0.5) p

Clamped-pinned
& free-pinned

3.927 7.069 10.210 13.351 16.493  (r + 0.25) p

Clamped-free 1.875 4.694 7.855 10.996 14.137  (r – 0.5) p

Selecting the values of lr L from the above table for the beam of 

interest, the natural frequencies can be found from equation (5).  
That is: 

 A

E I
 

L

L
  r

nrr
ρ

)(
ω

2

2
l

w ==

 A

E I
 

L
  n

ρ

)875.1(
ω

2

2

1 =
 A

E I
 

L
  n

ρ

)694.4(
ω

2

2

2 =where ,etc.
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The mode shapes are obtained by substituting l = lr into 

equation (7) and solving for the constants C1 to C4

4. Find the Modes Shapes

13 CC −= 24 CC −=From (7a) and (7b) and

Thus from (7c) or (7d)

12
λcoshλcos

λsinhλsin
C  

L  + L 

L  + L 
   =  C

rr

rr−
1σ C    = r

If we choose C1 = 1, the mode shape becomes

( ) ( )x   x      x     x   =  xY rrrrrr λcoshλcosσλsinhλsin −+−
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Mode 3

Mode 1Mode #1

( ) 







−+−

L

x
   

L

x
      

L

x
     

L

x
   =  xY rr

875.1
cosh

875.1
cosσ

875.1
sinh

875.1
sin
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( ) 







−+−  

L

x
    

L

x
       

L

x
     

L

x
   =  xY rr

694.4
cosh

694.4
cosσ

694.4
sinh

694.4
sin
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( ) 







−+−

L

x
   

L

x
      

L

x
     

L

x
   =  xY rr

855.7
cosh

855.7
cosσ

855.7
sinh

855.7
sin
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Descriptive terms Diagrammatic Boundary conditions

Built-in
clamped
encastré

Simple support
hinged
pinned

Free

Massless slider

“Standard” boundary conditions

00  = 
 x

 y
    y = 





00

0

2

2

 = 
x

y
   M = 

y = 






00

00

3

3

2

2

 = 
x

y
   S = 

 = 
x

y
   M = 













00

0

3

3

 = 
x

y
   S = 

 = 
x

y










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Other Boundary Conditions

Example   Cantilever Beam with a Mass at the Free End

x = 0 x = L

00,   y = x = Clamped end at 0  =  
x

y




and

Mass m

M of I IM

0 = Y 0 = 
d

 d

x

Y
andso as before

0 ,   S x = L However, at and 0 M 

Apply the principles of

1. Compatibility of displacements

2. Equilibrium of forces and moments

1. Boundary conditions
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S

S
M

M

Sign conventions
See Formula Sheet

( )txy ,

Apply the principles of

1. Compatibility of displacements

2. Equilibrium of forces

Consider the shear force reaction between the beam and the mass

S

( )ty ,L S

Free Body Diagram (separate the mass from the beam)

x = L

Compatibility of displacements

Equilibrium of forces

Displacement at the end of the beam 
is the same as the displacement of 
the mass

Shear force on the beam is equal and 
opposite to the force on the mass
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S

( )ty ,L Sx = L

For the beam For the mass

( )
Lx

x

y
IE   =  tS

=












3

3

But ( ) ( ) t  xY  =  t  ,xy ωcos

( ) t
x

Y
IE   =  tS

Lx

ωcos
d

d
3

3

=









( )
Lx

t

y
m   =  tS

=












2

2

y

( ) ( )( )tLYm   =  tS ωcosω2−

( )
( ) 0

ρ

λ

d

d
4

4

3

3

=+








=

LY
LA

Lm

x

Y

Lx

Equating and noting that

Aρ

λ
ω

4
2 IE

   =  

m
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S

S
M

M

Sign conventions
See Formula Sheet

( )txy ,

Apply the principles of

1. Compatibility of displacements

2. Equilibrium of moments

Consider the bending moment reaction between the beam and the mass

Free Body Diagram

x = L

Compatibility of displacements

Equilibrium of moments

Slope at the end of the beam is the 
same as the rotation of the mass

Bending moment on the beam is 
equal and opposite to the bending 
moment on the mass

M M

Slope

Lxx

y

=












=θ

x

y



39

For the beam For the mass

( )
Lx

x

y
IE   =  tM

=












−

2

2

But ( ) ( ) t  xY  =  t  ,xy ωcos

( ) t
x

Y
IE   =  tM

Lx

ωcos
d

d
2

2

=








−

( )
Lx

t
I   =  tM

=












2

2θ
Mq

( ) t
x

Y
I   =  tM

Lx

ωcos
d

d
ω2

M
=









−

Equating
( )

0
d

d

ρ

λ

d

d
4

4

2

2

M =







−









== LxLx
x

Y

LA

LI

x

Y

x = L

M M

Slope

Lxx

y

=












=θ

( ) t
x

Y

x

y
   =  t ωcos

d

d
θ 








=





t
x

Y

t
ωcos

d

d
ω

θ 2

2

2









−=




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( ) 0 = 0Y

0 = 
d

d

0=









xx

Y

Collecting the boundary condition 
equations together

( )
( ) 0

ρ

λ

d

d
4

4

3

3

=+








=

LY
LA

Lm

x

Y

Lx

( )
0

d

d

ρ

λ

d

d
4

4

2

2

M =







−









== LxLx
x

Y

LA

LI

x

Y

Substitute for Y(x) and its derivatives to give the new equation (7)

2.  Assemble into matrix form

Steps 3 and 4 follow as in the previous examples


