Shaft Whirl, Critical Speeds & Beam Vibration

- ❖ Shaft whirl is a potentially destructive, self-sustaining flexural vibration observed in rotating shafts
- ❖ **It occurs if the rotational frequency of the shaft coincides with a resonant frequency for flexural vibration**

- ❖ These shaft speeds are called *critical speeds*
- ❖ **If** the maximum design speed is less than the lowest critical speed, whirl will not be a problem
- ❖ This is not always possible and it is vital to be able to calculate what the critical speeds will be

Short case study – High speed drive shaft

- Given a generalized beam we wish to solve for
	- Natural Frequency *ωⁿ* or *ωnr*
		- Where r is the frequency number (1, 2, 3, ...)
	- Mode shapes associated with specific values of *ωnr*
		- Essentially we are looking for the vertical displacement, *y*, for any given point along the beam, x

• From previous experience we know then that we need to find a generalized equation

$$
[Z]{c} = {0}
$$

- Where $\det[Z]\!=\!0$ will give us $\omega_{\rm nr}$
- Solving the solution vector $\{C\}$ at ω_{nr} will define the mode shapes
- To do this you need a generalized equation for vertical displacement, *y*, as a function of distance along the beam, *x*, and time, *t*.

Theory for the Flexural Vibration of Uniform Beams

Consider the motion of an infinitesimal element of the beam of length δx

Analysis in the handout leads to the differential equation

$$
EI\frac{\partial^4 y}{\partial x^4} = -\rho A \frac{\partial^2 y}{\partial t^2}
$$
 (4)

This is the general governing differential equation for the free vibration of a beam

Equation (4) is a partial differential equation giving the deflection, *y*, which is a function of space *x* and time *t*

We want to find the natural frequencies and the corresponding mode shapes of the beam

For free vibration at a natural frequency, **the motion of each point on the beam will be sinusoidal**, but **the amplitude of vibration will vary along the length**

The deflected shape of the beam defined by the amplitude $\boldsymbol{Y}\left(\boldsymbol{x}\right)$ will give us the required **mode shape**

Substituting into (4), we get

$$
\frac{\mathrm{d}^4 Y}{\mathrm{d} x^4} = \frac{\rho A \omega^2}{E I} Y(x)
$$

For a uniform cross-section, *A* and *I* are constant and it's convenient to introduce the so-called **wavenumber**, λ , defined by

$$
\lambda^4 = \frac{\rho A \omega^2}{EI}
$$

(5)

The final solution for $Y(x)$ is

 $Y(x) = C_1 \sin \lambda x + C_2 \cos \lambda x + C_3 \sinh \lambda x + C_4 \cosh \lambda x$ (6)

$Y(x) = C_1 \sin \lambda x + C_2 \cos \lambda x + C_3 \sinh \lambda x + C_4 \cosh \lambda x$ (6)

- This results in a generalized equation for displacement of *y* at any given point along the beam, *x*, for a given frequency of vibration (contained in *λ*)
- **HOWEVER**, this contains 4 unknowns $(C_1, C_2,$ C_3 and C_4) and you will therefore need a minimum of 4 equations to solve for them
	- Boundary conditions must be used!!!

The constants C_1 - C_4 depend on the boundary **conditions at the ends of the beam and will define the mode shapes**

You will therefore need to partially differentiate (6)

$$
Y(x) = C_1 \sin \lambda x + C_2 \cos \lambda x + C_3 \sinh \lambda x + C_4 \cosh \lambda x
$$
 (6a)

several times with depending on what boundary conditions you have

$$
\frac{dY}{dX} = C_1 \lambda \cos \lambda x - C_2 \lambda \sin \lambda x + C_3 \lambda \cosh \lambda x + C_4 \lambda \sinh \lambda x
$$
\n
$$
\frac{d^2Y}{dx^2} = -C_1 \lambda^2 \sin \lambda x - C_2 \lambda^2 \cos \lambda x + C_3 \lambda^2 \sinh \lambda x + C_4 \lambda^2 \cosh \lambda x
$$
\n(6c)

$$
\left(\frac{d^3Y}{dx^3} = -C_1\lambda^3\cos\lambda x + C_2\lambda^3\sin\lambda x + C_3\lambda^3\cosh\lambda x + C_4\lambda^3\sinh\lambda x\right)
$$

General Approach for Finding the Solutions

- **1.** Start by identifying the four boundary conditions and express the boundary conditions in terms of $Y(x)$ and its derivatives
- **2.** Since each of the four boundary condition equations depends on C_1 **-** C_4 , they can be assembled in the form

$$
[Z]\{C\} = \{0\} \tag{7}
$$

where $\{C\}$ is a vector of the constants C_1 - C_4 and $[Z]$ is a coefficient matrix.

3. For a valid solution, $\det[Z]\!=\!0$

This gives the **Frequency Equation** and its roots will give the **natural frequencies** of the beam

12 **4.** When each root is substituted back into (7), the solution vector **{***C***}** will define the **mode shapes** when the values are put into (6)

Example 1 Simply-supported Beam

 = C x C ^x C x C ^x x Y d d 2 2 $Y(x) = C_1 \sin \lambda x + C_2 \cos \lambda x + C_3 \sinh \lambda x + C_4 \cosh \lambda x$

$$
Y(x) = C_1 \sin \lambda x + C_2 \cos \lambda x + C_3 \sinh \lambda x + C_4 \cosh \lambda x
$$

\n
$$
\frac{d^2Y}{dx^2} = -\lambda^2 C_1 \sin \lambda x - \lambda^2 C_2 \cos \lambda x + \lambda^2 C_3 \sinh \lambda x + \lambda^2 C_4 \cosh \lambda x
$$

\nHence, at $x = 0$, $Y = 0$ and $\frac{d^2Y}{dx^2} = 0$
\n
$$
Y(0) = C_1 \times 0 + C_2 \times 1 + C_3 \times 0 + C_4 \times 1 = 0
$$

\n
$$
\left(\frac{d^2Y}{dx^2}\right)_{x=0} = -\lambda^2 C_1 \times 0 - \lambda^2 C_2 \times 1 + \lambda^2 C_3 \times 0 + \lambda^2 C_4 \times 1 = 0
$$

\nand at $x = L$, $Y = 0$ and $\frac{d^2Y}{dx^2} = 0$
\n
$$
Y(L) = C_1 \sin \lambda L + C_2 \cos \lambda L + C_3 \sinh \lambda L + C_4 \cosh \lambda L = 0
$$

\n
$$
\frac{d^2Y}{dx^2} = -\lambda^2 C_1 \sin \lambda L - \lambda^2 C_2 \cos \lambda L + \lambda^2 C_3 \sinh \lambda L + \lambda^2 C_4 \cosh \lambda L = 0
$$

2. Assembling the four equations in matrix form

$$
\big[\!\!\big[Z \big]\!\!\big\{ \!C \big\} = \, \big\{\!0 \big\}
$$

3. Expanding the determinant of the coefficient matrix and equating to zero gives the **Frequency Equation.**

$$
-4\lambda^4 \sin\lambda L \sinh\lambda L = 0
$$

The Frequency Equation is $\hspace{.1cm} \sin \lambda L = 0$

which has roots $\lambda_r L = r \pi$ for $r = 1, 2, 3, ...$

Since
$$
\lambda^4 = \frac{\rho A \omega^2}{EI}
$$
 the **natural frequencies** are

$$
\omega_r = \omega_{nr} = \left(\frac{r\,\pi}{L}\right)^2 \sqrt{\frac{E\,I}{\rho\,A}} \text{ for } r = 1, 2, 3, \dots
$$

2. Assemble into matrix form

$$
\begin{bmatrix}\n0 & 1 & 0 & 1 \\
0 & -\lambda & 0 & \lambda \\
\sin \lambda L & \cos \lambda L & \sinh \lambda L & \cosh \lambda L \\
-\lambda^2 \sin \lambda L & -\lambda^2 \cos \lambda L & \lambda^2 \sinh \lambda L & \lambda^2 \cosh \lambda L\n\end{bmatrix}\n\begin{bmatrix}\nC_1 \\
C_2 \\
C_3 \\
C_4\n\end{bmatrix} =\n\begin{bmatrix}\n0 \\
0 \\
0 \\
0\n\end{bmatrix}
$$
\n(7a)
\n(7b)
\n(7a)

$$
\llbracket Z \rrbracket \{ \boldsymbol{C} \} = \ \{ \boldsymbol{0} \}
$$

3. Solving $det[Z] = 0$ gives the Frequency Equation and its roots will give *ω^r* contained in *λ^r* •This is complicated so we have given you the resulting Frequency Equation for a number of different beam types on **page 5** of your notes det $[Z] = 0$ gives the **F**
L contained in λ_r
L applicated so we have given a number of differen
L and the same page or $\lambda_r L$ on the same page

•But this is still difficult to solve, so we also give you the numerical solutions for $λ_r$ *L* on the same page

Numerical values of roots $\lambda_r L$ **of frequency equations**

Selecting the values of $\lambda_r L$ from the above table for the beam of interest, the natural frequencies can be found from reworking equation (5). That is: $\left(\lambda_{r}L\right) ^{2}\text{ \ \ \ }\left\vert E\text{ }I\right\vert$

$$
\omega_r = \omega_{nr} = \frac{(\lambda_r L)}{L^2} \sqrt{\frac{E I}{\rho A}}
$$

where
$$
\omega_{n1} = \frac{(\pi)^2}{L^2} \sqrt{\frac{EI}{\rho A}}
$$
 $\omega_{n2} = \frac{(2\pi)^2}{L^2} \sqrt{\frac{EI}{\rho A}}$, etc.

Example 1 Simply-supported Beam

The four boundary conditions lead to

$$
\begin{bmatrix}\n0 & 1 & 0 & 1 \\
0 & -\lambda^2 & 0 & \lambda^2 \\
\sin\lambda L & \cos\lambda L & \sinh\lambda L & \cosh\lambda L \\
-\lambda^2 \sin\lambda L & -\lambda^2 \cos\lambda L & \lambda^2 \sinh\lambda L & \lambda^2 \cosh\lambda L\n\end{bmatrix}\n\begin{bmatrix}\nC_1 \\
C_2 \\
C_3 \\
C_4\n\end{bmatrix} =\n\begin{bmatrix}\n0 \\
0 \\
0 \\
0\n\end{bmatrix}
$$
\n(7)

The frequency equation is $\;\;\det[Z]\!=\!0$

so the **natural frequencies** are which has roots $\lambda_r L = r \pi$ for $r = 1, 2, 3, ...$ (from previous table)

$$
\omega_r = \left(\frac{r\,\pi}{L}\right)^2 \sqrt{\frac{EI}{\rho\,A}} \quad \text{for } r = 1, 2, 3, ... \qquad \qquad \text{and} \qquad
$$

4. To find the **mode shapes**, substitute the roots into equation (7) and solve for the constants C_1 **-** C_4

$$
\begin{bmatrix}\n0 & 1 & 0 & 1 \\
0 & -\lambda_r^2 & 0 & \lambda_r^2 \\
\sin\lambda_r L & \cos\lambda_r L & \sinh\lambda_r L & \cosh\lambda_r L \\
-\lambda_r^2 \sin\lambda_r L & -\lambda_r^2 \cos\lambda_r L & \lambda_r^2 \sinh\lambda_r L & \lambda_r^2 \cosh\lambda_r L\n\end{bmatrix}\n\begin{bmatrix}\nC_1 \\
C_2 \\
C_3 \\
C_4\n\end{bmatrix} =\n\begin{bmatrix}\n0 \\
0 \\
0 \\
0\n\end{bmatrix}\n\begin{bmatrix}\n(7a) \\
(7b) \\
(7c) \\
(7d)\n\end{bmatrix}
$$

(7a)
$$
\blacksquare
$$
 $C_2 + C_4 = 0$ \blacksquare \blacksquare

The only non-zero constant is C_1

Its value is arbitrary & we normally choose $C_1 = 1$

$$
Y(x) = C_1 \sin \lambda x + C_2 \cos \lambda x + C_3 \sinh \lambda x + C_4 \cosh \lambda x \qquad (6)
$$

Hence, the mode shape is

$$
Y_r(x) = \sin \lambda_r x = \sin \frac{r \pi x}{L}
$$

Example 2 Cantilever (Clamped-free) Beam

1. Boundary conditions

The boundary conditions are

Clamped end at
$$
x = 0
$$
, $y = 0$ and $\frac{\partial y}{\partial x} = 0$

Free end at
$$
x = L
$$
, $M = 0$ $\therefore \frac{\partial^2 y}{\partial x^2} = 0$

\nand $S = 0$ $\therefore \frac{\partial^3 y}{\partial x^3} = 0$

Since $y(x,t) = Y(x) \cos \omega t$ the boundary conditions become

At
$$
x = 0
$$
, $Y = 0$ and $\frac{dY}{dx} = 0$
At $x = L$, $\frac{d^2Y}{dx^2} = 0$ and $\frac{d^3Y}{dx^3} = 0$

2. Assemble into matrix form

Substituting from equation (6a, 6b, 6c and 6d) we get (in matrix form)

$$
\begin{bmatrix}\n0 & 1 & 0 & 1 \\
\lambda & 0 & \lambda & 0 \\
-\lambda^2 \sin \lambda L & -\lambda^2 \cos \lambda L & \lambda^2 \sinh \lambda L & \lambda^2 \cosh \lambda L \\
-\lambda^3 \cos \lambda L & \lambda^3 \sin \lambda L & \lambda^3 \cosh \lambda L & \lambda^3 \sinh \lambda L\n\end{bmatrix}\n\begin{bmatrix}\nC_1 \\
C_2 \\
C_3 \\
C_4\n\end{bmatrix} =\n\begin{bmatrix}\n0 \\
0 \\
0 \\
0\n\end{bmatrix}
$$
\n(7a)
\n(7b)
\n(7c)
\n(7d)

This is the particular version of equation (7) for a cantilever beam

3. Set up the Frequency Equation

The Frequency Equation is given by $\det[Z]\!=\!0$

After manipulation (and noting that a cantilever has no rigid body modes), this gives

$$
1 + \cos\lambda L \cosh\lambda L = 0
$$

There are no closed-form solutions to this equation, so the roots $\lambda_r L$ must be obtained numerically and are given in the handout on **page 5**

Numerical values of roots $\lambda_r L$ **of frequency equations**

Selecting the values of $\lambda_r L$ from the above table for the beam of interest, the natural frequencies can be found from equation (5). That is:

$$
\omega_r = \omega_{nr} = \frac{(\lambda_r L)^2}{L^2} \sqrt{\frac{E I}{\rho A}}
$$

where $\omega_{n1} = \frac{(1.875)^2}{L^2} \sqrt{\frac{E I}{\rho A}} \quad \omega_{n2} = \frac{(4.694)^2}{L^2} \sqrt{\frac{E I}{\rho A}}$, etc.

4. Find the Modes Shapes

The **mode shapes** are obtained by substituting $\lambda = \lambda_r$ into equation (7) and solving for the constants C_1 to C_4

From (7a) and (7b) $C_3 = -C_1$ and $C_4 = -C_2$

Thus from (7c) or (7d)

$$
C_2 = \frac{\sin \lambda_r L + \sinh \lambda_r L}{\cos \lambda_r L + \cosh \lambda_r L} C_1 - \sigma_r C_1
$$

If we choose $C_1 = 1$, the mode shape becomes

$$
Y_r(x) = \sin \lambda_r x - \sinh \lambda_r x + \sigma_r (\cos \lambda_r x - \cosh \lambda_r x)
$$

"Standard" boundary conditions

Other Boundary Conditions

Example Cantilever Beam with a Mass at the Free End

Apply the principles of

- **1. Compatibility of displacements**
- **2. Equilibrium of forces and moments**

Apply the principles of

- **1. Compatibility of displacements**
- **2. Equilibrium of forces**

Consider the shear force reaction between the beam and the mass

Free Body Diagram (separate the mass from the beam)

Apply the principles of

- **1. Compatibility of displacements**
- **2. Equilibrium of moments**

Consider the bending moment reaction between the beam and the mass

$$
\sum_{x=L} \int^{M} \int \int \int \int \text{Slope } \theta = \left(\frac{\partial y}{\partial x}\right)_{x=L}
$$

For the beam For the mass

$$
M(t) = -EI\left(\frac{\partial^2 y}{\partial x^2}\right)_{x=L}
$$

But $y(x, t) = Y(x) \cos \omega t$

$$
M(t) = -EI\left(\frac{d^2 Y}{dx^2}\right)_{x=L} \cos \omega t
$$

$$
M(t) = -EI\left(\frac{d^2 Y}{dx^2}\right)_{x=L} \cos \omega t
$$

$$
M(t) = -EI\left(\frac{d^2 Y}{dx^2}\right)_{x=L} \cos \omega t
$$

$$
M(t) = -I_M \omega^2 \left(\frac{dY}{dx}\right)_{x=L} \cos \omega t
$$

$$
M(t) = -I_M \omega^2 \left(\frac{dY}{dx}\right)_{x=L} \cos \omega t
$$

$$
S = \omega^2 \omega t
$$

Collecting the boundary condition equations together

$$
Y(0) = 0
$$

$$
\frac{dY}{dx}\bigg|_{x=0} = 0
$$

$$
\left(\frac{d^3Y}{dx^3}\right)_{x=L} + \frac{m(\lambda L)^4}{\rho A L^4} Y(L) = 0
$$

boundary condition
\nthere
\n
$$
Y(0) = 0
$$
\n
$$
\frac{d^3 Y}{dx^3}\Big|_{x=L} + \frac{m(\lambda L)^4}{\rho A L^4} Y(L) = 0
$$
\n
$$
\frac{d^2 Y}{dx^2}\Big|_{x=L} - \frac{I_M(\lambda L)^4}{\rho A L^4} \left(\frac{dY}{dx}\right)_{x=L} = 0
$$
\ninto matrix form
\nor $Y(x)$ and its derivatives to give the new equation (7)
\nfollow as in the previous examples

2. Assemble into matrix form

Substitute for $Y(x)$ and its derivatives to give the new equation (7)

Steps 3 and 4 follow as in the previous examples