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Shaft Whirl, Critical Speeds & Beam Vibration

Shaft whirl is a potentially
destructive, self-sustaining
flexural vibration observed in
rotating shafts

It occurs if the rotational
frequency of the shaft
coincides with a resonant
frequency for flexural
vibration

These shaft speeds are called
critical speeds

If the maximum design speed is less than the lowest
critical speed, whirl will not be a problem

This is not always possible and it is vital to be able to
calculate what the critical speeds will be



Short case study - High speed drive shaft
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y(X)
* Given a generalized beam we wish to solve for

— Natural Frequency w, or w,,
* Where r is the frequency number (1, 2, 3, ...)

— Mode shapes associated with specific values of

wnr

* Essentially we are looking for the vertical displacement,
y, for any given point along the beam, x



From previous experience we know then that we
need to find a generalized equation

[Zz]iC} = 10

Where det [Z ] =0 will give us w,,,

Solving the solution vector {C} at w_ . will define the
mode shapes

To do this you need a generalized equation for vertical
displacement, y, as a function of distance along the
beam, x, and time, t.



Theory for the Flexural Vibration of Uniform Beams
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Consider the motion of an infinitesimal element of the beam of length 0X
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Analysis in the handout leads to the differential equation
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This is the general governing differential equation
for the free vibration of a beam

Equation (4) is a partial differential equation giving the deflection, Y,
which is a function of space X and time

We want to find the natural frequencies and the
corresponding mode shapes of the beam



For free vibration at a natural frequency, the motion of each
point on the beam will be sinusoidal, but the amplitude of
vibration will vary along the length

Substitution y(x,t) — Y(x) cosmt |into (4) |EI Pl —pA

The deflected shape of the beam defined by the amplitude Y (X)
will give us the required mode shape




Substituting into (4), we get

dx* El
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For a uniform cross-section, A and | are constant and it’s convenient
to introduce the so-called wavenumber, A, defined by

(5)

The final solution for Y(X) is

Y (x) = C,sinAx +C,c0s Ax+C,sinhAx +C,coshAx | (6)




Y (x) = C,sinAx +C,cos Ax+C,sinhAx +C,cosh A x| (6)

* This results in a generalized equation for
displacement of y at any given point along the

beam, x, for a given frequency of vibration
(contained in A)

* HOWEVER, this contains 4 unknowns (C,, C,,
C, and C,) and you will therefore need a
minimum of 4 equations to solve for them

— Boundary conditions must be used!!!



The constants C; - C, depend on the boundary

conditions at the ends of the beam and will define
the mode shapes

Descriptive terms

Diagrammatic

Boundary conditions

Built-in
clamped
encastré

\

Y

Simple support

hinged
pinned
o
-
ree GQ’
A ‘\//

|

% s




You will therefore need to partially differentiate (6)

[ Y (x) = C,sinAx +C,cos Lx+C,sinhAx +C, cosh xxasa)

several times with depending on what boundary
conditions you have

(dY _ ~(6b)
— = C,hcosix —C,Asin Ax+C,AcoshAx +C,AsinhAx
dX

\_

EIZY_ 2 . 2 2 .- 2 (GC)\
2 —C, A%sinkx —C, A" cos Ax+C; A" sinhAx +C, A" cosh L x
E (6d)\
%: ~C,A’cosAx +C,A’sin Ax+C, A cosh A x +C,A’sinh A

J




General Approach for Finding the Solutions
1. Start by identifying the four boundary conditions and express the

boundary conditions in terms of Y(X) and its derivatives

2. Since each of the four boundary condition equations depends on
C, - C,, they can be assembled in the form

[z]{c} = {0} (7)

where {C} is a vector of the constants C; - C, and [Z] is a
coefficient matrix.

3. For a valid solution, det[Z]=0

This gives the Frequency Equation and its roots will give the
natural frequencies of the beam

4. When each root is substituted back into (7), the solution vector {C}

will define the mode shapes when the values are put into (6) 12



Example 1 Simply-supported Beam

\ . — Cosh
\ 2 — Sinh
T~ | = d .
—sinh® = cosh©
5 a, ; 1 do
// 2 9 cosho = sinh6

Y (x) = C,sinAx +C,cos Ax+C,sinhAx +C, cosh Ax



Y (x) = C,sinAx +C,cos Ax+C,sinhAx +C, cosh Ax

2
Zli = -A*C,sinAx —1*C,cos Ax+ A“C,sinhAx +A*C, cosh A X
X
2
Hence, atx=0, Y =0 and d \2(20
dx

Y (0)=|C,x0 +C,x1 +C,x0 +C,x1 =0

2
(3—\2] =|-2C,x0 -2*C,x1 +2*C,x0 +21°C,x1 =0
X

X=0

2
andat x=L, Y =0 and d ZZO
dXx
Y (L) =|C,sinAL +C,cos AL+C,sinhAL +C,coshAL=0

—— = A C,sinAL =A°C,cos AL+ A°C,sinh AL +21°C,coshAL=0

14



2. Assembling the four equations in matrix form

[z]ic} = {0}

0 1 0 1 ][(C,] [0
0 — )\ 0 % C, 0

. . 1= A D
SinAL cosAL sinhiL coshAL ||C, 0
—A%sinAL —A%cosAL A“sinhAL  A’coshAL ||C,] (O

3. Expanding the determinant of the coefficient matrix and
equating to zero gives the Frequency Equation.

—4)* sinALsinhAL = O

15



—4)\* sinALsinhAL = 0

What are the roots of the equation AN ; — Cosh

Can A=07? \ =

The definition of A (equation 5) is

A is only zero if the natural frequetr e

This is only possible if the beam he 4

But a simply-supported beam does NOT have rigid pody modes

S A#=0 As a result SINhAL =0

A sinLspwgl =0  o==> | sinAL = 0




The Frequency Equationis SINAL = 0

which has roots

Since 7»4 —

ML =rm for r=1,2,3,...

2

pA®
El

the natural frequencies are

rn ) [El
(Dr:a)nr:(T) p_A for r=1,2,3, ceoe

17



2. Assemble into matrix form

O
0

SInAL
—A2sIinAL

1
-A
cosAL

—A2cosAL  A2sinhAL A2coshAL |

0 1
0 A
sinhAL coshAL

[z]ic} = {0}

000

N
N

\
N HO
J

w

o o o o

(7a)
(7b)
(7a)
(7¢)

3. Solving det[Z]: 0 gives the Frequency Equation and its roots
will give w, contained in A,
*This is complicated so we have given you the resulting Frequency

Equation for a number of different beam types on page 5 of your

notes

*But this is still difficult to solve, so we also give you the numerical
solutions for A L on the same page



Numerical values of roots ?\,r L of frequency equations

r 1 2 3 4 5 >5
Pinned-pinned T 27 3n 47 5n rr
Clamped-
clamped 4.730 7.853 | 10.996 | 14.137 | 17.279 | ~(r+ 0.5)=n

& free-free

Clamped-pinned
& free-pinned

Clamped-free | 1.875 | 4.694 | 7.855 | 10.996 | 14.137 | ~(r-0.5)nx

3.927 7.069 | 10.210 | 13.351 | 16.493 | ~(r+0.25)nx

Selecting the values of A, L from the above table for the beam of
interest, the natural frequencies can be found from reworking

equation (5). That is: (A.L) =
O =0, = 2 N
L pA

where ®, = @2 E ®, = (272')2 E ,etc.

| 2 p A | 2 p A 19



Example 1 Simply-supported Beam

X=0 I 1 X=L
/\ /\
The four boundary conditions lead to
i 0 1 0 1 |(C,] [0
0 —\ 0 % C, 0
: : 3 s=< ¢ (7)
SinAL cosAL sinhiL coshaL ||C, 0
| —A%sinAL —A®cosAL A°sinhAL A’coshAL ||C,| |O]

The frequency equation is det [Z]= 0

which hasroots A, L = rm for r=1,2,3, ... (from previous table)

so the natural frequencies are

2
OF = (I’ﬂ:j El for r=1,2,3,...
p A 20



4. To find the mode shapes, substitute the roots into equation (7)
and solve for the constants C, - C,

0 1 0 1 c,) (o] (7a)
0 — A 0 X C,|_Jo| @)

. : < =< -
SINA, L COSA, L sinhi, L coshi,L ||C, 0| (7¢c)
—Afsind, L —Afcosi,L Afsinhk L AfcoshaL||C,| (0] (7d)

(7a) > C,+C, =0 Since A, #0

>
C,=C, =0
(7b) => A2 (-C,+C,) =0 : :

(7¢) > sinA,L.C,+sinh A, L.C, =0

4
(7d) w==>-)"sink, L.C,+ A, sinhA,L.C, = 0 pat
m—>1| ..C, =0




The only non-zero constant is C;

Its value is arbitrary & we normally choose Cl =1

Y (x) = C,sinAx +C,cos Ax+C,sinhAx +C, cosh Ax

Hence, the mode shape is

Y, (x) = sink, x = sianLX

(6)

22



Mode #1 (r=1)

23



Mode #2 (I =2)

. 27X

24



Mode #3 (r = 3) C3X




Example 2 Cantilever (Clamped-free) Beam

Xx=0

7.

1. Boundary conditions

The boundary conditions are

9,
Clamped endat X =0, Yy =0 and —i =0
2
Freeendat X=L, M =0 '.82/:0
OX
0’y
and S =0 ...— =0

26



Since y(x ,t) =Y (X) COSwt the boundary conditions become

2. Assemble into matrix form

At x=0 ,

At X =1L,

and

and

dY

_:O
dx
3
d\gzo
dx

Substituting from equation (6a, 6b, 6¢ and 6d) we get (in matrix form)

0
A

This is the particular version of equation (7) for a cantilever beam

—A2sinAL
—A3coSsAL

1
o)

—A2cosAL  A2sinhAL A2coshAL
A3coshAL  A3sinhAL ||

A3sinAL

0
A

1
0

)

0
0
10

(7a)
(7b)
(7¢)
(7d)

27



3. Set up the Frequency Equation

The Frequency Equation is given by det [Z]= 0

After manipulation (and noting that a cantilever has no rigid body
modes), this gives

1+ cosALcoshAL = O

There are no closed-form solutions to this equation, so the roots A, L
must be obtained numerically and are given in the handout on page 5

28



Numerical values of roots Kr L of frequency equations

r 1 2 3 4 5 >5
Pinned-pinned T 21 3n 4 5n rr
Clamped-
clamped 4.730 7.853 | 10.996 | 14.137 | 17.279 | ~(r+ 0.5) =«

& free-free

Clamped-pinned
& free-pinned

Clamped-freq 1.875 4.694 7.855 | 10.996 | 14.137 | ~(r-0.5)n=

3.927 7.069 | 10.210 | 13.351 | 16.493 | ~(r + 0.25)«

Selecting the values of A, L from the above table for the beam of
interest, the natural frequencies can be found from equation (5).

That is: 5
e~ D [ED
r nr L2 pA
where o = —(1.8732 El ®, = (4.694° |E | etc.

L° pA |2 pA 29



4. Find the Modes Shapes

The mode shapes are obtained by substituting A=A, into
equation (7) and solving for the constants C; to C,

From (7a) and (7b) C;=-C; and C,=-C,

Thus from (7c¢) or (7d)

sin A, L+sinh A, L
c, = - M A '~ C, =5, C
° cosh, L+coshr L| * or 71

If we choose C; =1, the mode shape becomes

Y, (x) = sin A, x — sinh A, X + o, (cos A, x — cosh A,X)

30




% Mode #1
0.0 0j2 Ojﬁé}xial position X/L0j6 O..8 le
. 1.875x . 1.875x% 1.875x% 1.875X%
Y, (x) = sin — sinh + o, | coS — cosh

Clamped

31




H Mode #2 /
Axial position x/L .
. 4.694x . 4.694 X 4.694 x 4.694 x
Y, (x) = sin — sinh + o, | cos — cosh

Clamped

32




amplitude

tion

Vibra

sin

/\ Mode #3 /

Axial position x/L
7.855X . 1.855X 7.855X
T sinh 1 + G, | COS —

cosh

7.855X

33



“Standard” boundary conditions

Descriptive terms

Diagrammatic

Boundary conditions

Built-in N oy
clamped % $ y=20 Iy =
encastré \ X
: y=20
Simple support %
hinged M =0 o’y _ 0
pinned - © ol -
2
M=o .. &Y=
OX
Free S 5
s=0 .. 2 =
OX
oy _
O X
Massless slider S 5
S=0 5%:o
X

34



Other Boundary Conditions

Example Cantilever Beam with a Mass at the Free End

Xx=0 X=L

G Mass M
Mof I Iy

/A

1. Boundary conditions oy
Clampedendat X =0, y=0 and 5 =0
dyY
SO Y=0 |and |—= as before
d X

However,at X=L,|S 20 | and | M # 0

Apply the principles of
1. Compatibility of displacements

2. Equilibrium of forces and moments 35



Apply the principles of
1. Compatibility of displacements
2. Equilibrium of forces

Consider the shear force reaction between the beam and the mass

Free Body Diagram (separate the mass from the beam)

S

T vy@)iﬁ

S
Cg’ patibility of displa nts Displacgement at the end of the beam
tI 1 I _f i is the same as the displacement of

the mass

EquiliBrium_of forces : -
q Sign conventions y@hﬁ%r force on the beam is equal and

caelFormula Sheet opposite to the force on the mass

36




| o "

x=L j y(L,t) S
For the beam For the mass
_ 0’y (&%
S(t) = El(ﬁj . Ly s@)= m[W]H

X /
But Y(x,t) = Y (x) cosmt o

{S(t): El (%j Lcosmt} [S(t): mx(—coZY(L)cosa)tﬂ

X

Y(L) =0

Equating and noting that [dBYj X m(?»L)“
=L

ElL
o = dx*) _ . pAL’

pA




Apply the principles of

1.
2.

Compatibility of displacements

Equilibrium of moments

Consider the bending moment reaction between the beam and the mass

Free Body Diagram

y

A
) Slope 0 = (%)X: ]

% "1*"_’_‘_"_*_V_‘?f_f'is_'i'?‘sf'*’j"

Equili§rium of moments

Sign conventions
See Formula Sheet

nts Silope ¢
same 3

yBetgin

equal g

it the end of the beam is the
s the rotation of the mass

g moment on the beam is
nd opposite to the bending

MOoMmer

't on the mass 38




M M

=" R e,

X=L
For the beam For the mass
M(t) = —EI[ZXy] B )9 M(t) = | [Ztej B
cos mt 0(t) = ? = [dij cos ot

But y(x,t) =Y (x)
2 2
] coSmt — = —® ( j COS ot
2 X=L

EM() —E|[32 9;
(5] o

2 4 }‘
Equating [d—Y] — IM (MZ) dYJ =0
_L pAL \dX v =L

39




Collecting the boundary condition Y (O) = 0

equations together
(dvj
dX ), _qo

[ﬁlj_.+m@Uﬂmg:o

|
o

pAL*

(d_Yj (L) (d_Yj _ 0
2 1
dx ce L pAL dx ce L

2. Assemble into matrix form
Substitute for Y(X) and its derivatives to give the new equation (7)

Steps 3 and 4 follow as in the previous examples 40



